网络赌博-网络赌博举报官方网站

En

醫(yī)學部梁臻副教授在IEEE Transactions on Neural Networks and Learning Systems發(fā)表針對標簽稀缺問題的情感腦機接口研究成果

來源:醫(yī)學部 發(fā)布時間:2024-11-29 19:11 點擊數(shù): Views

近日,醫(yī)學部生物醫(yī)學工程學院梁臻老師在計算機科學知名期刊IEEE Transactions on Neural Networks and Learning Systems(中科院一區(qū)TOP,影響因子10.2)上發(fā)表題為“EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based Cross-Subject Emotion Recognition”的論文。香港城市大學博士研究生周如雙(18級深圳大學本科生)、深圳大學研究生葉煒珊和哈爾濱工業(yè)大學(深圳)張治國教授為共同第一作者,深圳大學梁臻副教授為獨立通訊作者。深圳大學為第一作者單位和通訊單位。

腦電圖(EEG)作為情緒識別的工具,在情感計算和腦機接口領(lǐng)域具有巨大潛力,但標簽數(shù)據(jù)稀缺仍是其廣泛應用的主要障礙。傳統(tǒng)的情緒識別方法依賴大量標注數(shù)據(jù),標注過程既費時又昂貴。為了解決這一問題,我們提出了一個名為“EEGMatch”的新型半監(jiān)督遷移學習框架,能夠在少量標注數(shù)據(jù)和大量無標簽數(shù)據(jù)的條件下實現(xiàn)高效情緒解碼。

EEGMatch包含三個核心模塊:(1)EEG-Mixup數(shù)據(jù)增強。我們提出了一種新的數(shù)據(jù)增強方法,通過生成更多有效樣本來幫助模型訓練。這種方法針對EEG信號的非平穩(wěn)特性,提升了數(shù)據(jù)增強的效果,即使標簽數(shù)據(jù)稀缺,也能為模型提供足夠的信息。(2)半監(jiān)督兩步配對學習,包括原型級和實例級配對學習。原型級配對通過全局關(guān)系捕捉情緒類別特征,實例級配對則關(guān)注局部內(nèi)在關(guān)系。這樣可以從有限的標簽數(shù)據(jù)中提取情緒的關(guān)鍵特征,尤其在情緒信號復雜時表現(xiàn)出色。(3)半監(jiān)督多域自適應方法。該方法幫助對齊不同域(如有標簽和無標簽的數(shù)據(jù)集)之間的特征表示,減輕了分布失配問題,尤其適用于跨受試者情緒識別,提升模型的泛化能力。通過這三個創(chuàng)新模塊,EEGMatch有效解決了EEG情緒識別中的標簽稀缺問題,并能在不同受試者間準確識別情緒。

為了驗證EEGMatch框架的效果,我們在多個公認的基準數(shù)據(jù)庫(如SEED、SEED-IV、SEED-V)上進行了廣泛實驗,并采用跨受試者的留一法驗證。結(jié)果表明,EEGMatch在不同的標簽稀缺條件下明顯優(yōu)于現(xiàn)有的先進方法,展示了其在情緒識別中的顯著優(yōu)勢,在受限標簽條件下的情緒解碼任務中具有廣闊的應用前景。

EEGMatch的源代碼已公開:https://github.com/KAZABANA/EEGMatch。

該研究獲得國家自然科學基金等項目資助。

原文鏈接:https://doi.org/10.1109/TNNLS.2024.3493425

线上百家乐可靠吗| 百家乐官网平注7s88| 澳门百家乐官网群官网| 澳门百家乐大揭密| 太阳城百家乐如何看路| 百家乐奥| 威尼斯人娱乐备用6222| 最好的棋牌游戏平台| 淘金盈娱乐城| 优博在线娱乐| 丰都县| 百家乐官网现金游戏注册送彩金| 真人百家乐官网游戏网址| 百家乐官网游戏介绍与分析| 在线百家乐官网作弊| 百家乐e78| 明升备用地址| 百家乐官网桌手机套| 至尊百家乐官网20111110| 百家乐官网路子技巧| 大发888非法吗| 百家乐官网连输的时候| 免费百家乐官网预测工具| 百家乐77scs| 英皇国际娱乐| 新梦想百家乐官网的玩法技巧和规则 | 百家乐官网官网站| 缅甸百家乐赌| 在线真钱游戏| 百家乐官网手论坛48491| 大发888客户端 运行| 宝博百家乐官网娱乐城| 澳门线上赌场| 百家乐投注必胜法| 百家乐官网技巧心| 通化市| 赌场百家乐欺诈方法| 澳门百家乐官网娱乐城送体验金 | 百家乐官网赌博网址| 大发888娱乐城充值| 百家乐官网三国|